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IdIopathIc nIghtmares (nms) are epIsodes of 
Intense dysphorIc dreamIng—usually In-
volvIng feelIngs of threat, anxIety, fear or 
terror—that arise primarily during rem sleep. their recurrent 
form, known as nightmare disorder,1,2 has no known etiology 
but is nonetheless considered to be distinct from anxiety disor-
ders,2 despite the fact that nms are highly comorbid with many 
anxiety disorders and a frequent source of daytime distress. the 
occurrence of nms in rem sleep is consistent with an under-
lying autonomic dysfunction that is periodically exacerbated 
by the intense autonomic fluctuations that characterize normal 
rem sleep.3,4 however, that nms have also been observed oc-
casionally in stage 2 nrem sleep leaves the exclusivity of this 
autonomic dysfunction to rem sleep in doubt. the relation-
ship of nm pathology to that of different anxiety disorders also 
remains unclear.

Several findings suggest that abnormally high sympathetic 
activity is a factor in nm pathology. first, and most obviously, 
rem sleep related tachycardia5,6 and accelerated respiration ap-
pear in the psg records of patients just before they awaken 
from many nm episodes.5 second, nms occur primarily late in 

the sleep period, when rem sleep is most concentrated and its 
autonomic surges most extreme.3 third, elevated sympathetic 
activity has been documented for several conditions that are 
characterized by severe recurrent NMs, such as posttraumatic 
stress disorder (ptsd).7,8 finally, the habitual rem sleep of 
nm subjects (with or without ptsd) is punctuated by frequent 
periodic leg movements (plm) and plm with microarousals,9 
both of which are correlates of patterned rises and falls in heart 
rate (hr),10,11 increased hr variability (hrv)12 and increased 
blood pressure (Bp).13

The hypothesized increase in sympathetic activity in NM 
etiology is likely an anomaly of normal rem sleep autonom-
ic activity, which is itself quite volatile in nature. rapid eye 
movement bursts are normally accompanied by transient hr 
surges3,14,15 and an elevation in the low-frequency (lf) spec-
trum of the ecg, which indexes relative sympathetic activa-
tion.4,16 rem sleep is also accompanied by phasic surges in 
Bp17 which may contribute to the early morning Bp surges 
that are thought to increase risk for acute cardiac events.18 
Such findings support the suggestion that intense emotion-
ality during dreaming may precipitate life-threatening ar-
rhythmias,3 a possibility consistent with both folklore and 
the observation of “killer nightmares” preceding coronary 
events.19 thus, changes in rem sleep related autonomic ac-
tivity may be a factor in nightmare formation, although com-
parisons with stage 2 sleep and wakefulness are needed to 
determine whether it is in fact exclusive to rem sleep. fur-
ther, the experimental manipulation of rem sleep propensity 
may be a useful method for unmasking the pathophysiology 
of this autonomic activity.
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hrv measures are an appropriate method for assessing 
autonomic fluctuations in NM patients. Among other types 
of anxiety disorders, such as panic and the specific phobias, 
hr and hrv measures have been used to demonstrate the 
likely pathological implication of elevated sympathetic ac-
tivation.20,21 a growing literature also documents the valid-
ity of sleep related hrv measures among normal subjects3,4 
and sleep disordered patients.7,22,23 for example, insomniac 
patients have higher hr and higher lf spectral power in all 
sleep stages than do healthy subjects;23 both measures reflect 
elevated sympathetic nervous system activity. Similar find-
ings were reported for ptsd patients.7 despite such advanc-
es, however, no studies assessing hrv have been conducted 
for patients suffering from idiopathic nms.

assessment of hrv typically includes time and frequency 
domain measures. Both types of measures are derived from 
quantification of R-waves of successive QRST complexes. 
time domain measures quantify the mean heart rate (hr) and 
standard deviation of normal to normal r-r intervals (sdnn) 
as well as the percentage of n-n intervals that differ mark-
edly (± 50msec) from preceding intervals (pnn50). frequency 
domain measures are derived from spectral analysis of r-r in-
tervals and may be expressed in either absolute or normalized 
terms. Very low frequency (VLF) power reflects the influence 
of slow regulatory mechanisms of still unknown origin; lf 
power is believed to reflect sympathetic influences on the heart 
as well as cardiac baroreflex responsiveness to BP variation.24 
HF power primarily reflects respiration driven vagal modula-
tion of the heart.25 finally, the lf/hf ratio is considered to 
reflect sympathovagal balance.20,26-28 Normalized unit spectral 
power measures (hfnu, lfnu) are derived from their abso-
lute power equivalents (HF, LF) over a normalizing denomi-
nator such as total power (or total power minus vlf). they, 
together with the lf/hf ratio, are largely equivalent carriers of 
information about sympathovagal balance.29 lf in particular is 
characteristic of anxiety disorders such as ptsd30 and panic31 
(see review21).

typically, during rem sleep, hr, lf, and lfnu increase; 
while hf and hfnu decrease relative to nrem sleep, suggest-
ing that normal REM sleep is characterized by relative sympa-
thetic activation.4,32-34 In light of findings reviewed above, we 
selected lfnu, a measure of relative sympathetic activation, as 
the primary endpoint for the present study.

studies of various psychiatric problems have employed 
challenge procedures during wakefulness to stimulate auto-
nomic activity and elicit hrv anomalies, challenges such as 
injections of isoproterenol that induce hr amplitude vari-
ability in panic disorder35 and presentations of trauma-related 
stimuli that inhibit lf power in ptsd.36 In the case of some 
sleep disorders, total and partial sleep deprivation have been 
used as challenge procedures. for example, 38 hours of total 
sleep deprivation have been shown to induce somnambulis-
tic behaviors during recovery sleep among subjects whose 
symptoms would otherwise go undetected on psg record-
ings.37 In line with the notion that nms are primarily a rem 
sleep anomaly, we explored the use of partial rem sleep de-
privation as a challenge procedure for eliciting the autonomic 
symptoms of nms in the laboratory. the success of such a 
procedure would facilitate laboratory studies of nms which,  

with few exceptions, have been hampered by the unexplained 
absence of reported nm episodes during psg recordings.38,39

When healthy human subjects are deprived of rem sleep, 
rem propensity is disproportionately increased during subse-
quent sleep.40 this increase may take the form of atypically 
high rem percentage or rem density41 and an increase in the 
dreamlike quality of rem sleep and hypnagogic dreaming,42 
among other changes. In rats, rem sleep deprivation height-
ens emotional drive, i.e., aggressiveness43 and impairs recall 
of fear extinction.44 thus, we expected that higher than normal 
rem propensity would be brought about by a partial rem 
sleep deprivation procedure and would provoke measurable 
autonomic symptoms during the recovery sleep of nm sub-
jects; this was expected to include hrv anomalies and perhaps 
nm episodes as well. from the literature reviewed earlier, we 
anticipated that nm sufferers would show evidence of elevated 
sympathetic activity, especially elevated lfnu, relative to con-
trol subjects on pre-rem deprivation measures, and that rem 
deprivation would further exacerbate these differences on re-
covery night—particularly during rem sleep. We also expect-
ed that this sympathetic activity indicator would be associated 
in a dose-response fashion with measures of rem propensity.

methOds

subjects
sixteen individuals who reported during a telephone screen-

ing recalling at least 1 NM/week for ≥ 6 months (Mage = 26.1 ± 
8.7 y) and 11 healthy comparison subjects who reported recall-
ing < 1 nm/month (mage = 27.1 ± 5.6 y) were recruited by me-
dia advertisements and through contacts with laboratory staff. 
These criteria were taken from the International Classification 
of sleep disorders45 diagnostic criteria for nightmare disorder 
and indicate at least moderately severe nms. the groups did 
not differ in age (F1,25 = 0.106, p = 0.747) or in male to female 
ratio (NM: 6:10; CTL: 4:7; χ2 = 0.004, p = 0.95). the groups 
also did not differ in their self-reported use of alcohol (nm: 
5/16 none; CTL: 7/11; χ2 = 2.769, p = 0.096), caffeine (nm: 
10/16 ≥ 1/day; CTL: 5/11; χ2 = 0.767, p = 0.381), recreational 
drugs (NM: 14/16 none; CTL: 10/11; χ2 = 0.077, p = 0.782), or 
tobacco (NM: 13/16 none; CTL: 10/11; χ2 = 0.482, p = 0.488), 
but did differ marginally in their use of prescription medications 
(NM: 12/16 none; CTL: 11/11; χ2 = 3.228, p = 0.072). the latter 
difference was due to 3 nm subjects taking oral contraceptives. 
subjects were not seen in a clinical context, were not currently 
following psychotherapy, were not seeking treatment, and were 
not given extensive psychiatric evaluations. during intake, 
none reported having neurological, psychiatric, or other sleep 
disorders, and none reported having prior traumatic experiences 
in response to the question “have you had any traumatic expe-
rience in the past such as a physical attack, car accident, etc?” 
nonetheless, the nm group scored higher than the ctl group 
on the following screening questionnaires: Beck depression In-
ventory (BdI),46 state trait anxiety Inventory-state subscale 
(staI-s),47 symptom checklist 90-revised (scl90-r) global 
severity index.48 subjects kept a 1-week daily home log for rat-
ing sleep and dream attributes; only the items assessing dream 
anxiety (1 = not at all; 9 = very) and the per-day frequencies of 
nms are reported here.
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the protocol was approved by the hospital ethics review 
board. subjects were aware they would be paid $25 per labora-
tory recording night as well as parking and breakfast expenses. 
Written informed consent was obtained.

laboratory Procedures
subjects slept for 3 consecutive nights: baseline (n1), 

rem deprivation (n2) and rem recovery (n3). on n1, they 
were fitted with a standard montage of PSG and ECG elec-
trodes and allowed to sleep undisturbed in a comfortable, 
sound-shielded room until the scheduled morning awaken-
ing. audio-visual surveillance was maintained throughout 
the night. on n2, subjects were deprived of rem sleep by 
enforced awakenings (80 dB, 500 Hz, 0.5-sec tone) from ev-
ery rem sleep episode after the 2nd, beginning 5 min after 
appearance of the first rapid eye movement of each episode. 
they were asked to report and rate sleep mentation and then 
allowed to return to sleep. on n3, mentation was sampled at 
sleep onset,42 then subjects were allowed to sleep undisturbed 
until the morning.

sleep recordings
Subjects were fitted with a 14-channel recording montage 

that included 4 referential eeg channels from the international 
10-20 electrode placement system (c3, c4, o1, o2); 4 channels 
for left/right and vertical/horizontal eye movements; 4 EMG 
channels for chin and right side forearm extensor, leg tibialis 
and forehead corrugator muscle activities; 1 cardiac channel 
for bipolar ecg; and 1 respiration channel for nasal thermistry. 
tracings were scored and artifacts removed by trained poly-
somnographers applying standard criteria and using harmonie 
v6.0b49 software. an in-house program was used to output stan-
dard sleep stage variables.

ecg analyses
three-minute r-r and respiration segments were selected 

from rem sleep, stage 2 nrem sleep (samples both preced-
ing and following rem sleep, subsequently averaged), and pre-
sleep wakefulness. segments were visually selected to contain 
only stationary signals, i.e., to contain no microarousals, peri-
odic leg movements, complex rem sleep movements, apneas, 
or sleep state changes. a trained technologist screened the ecg 
signal to detect r-waves and to identify and remove arrhythmias 
and artifacts. R-R variability was then analyzed in both time 
and frequency domains using Cardiolab software (Fondazione 
s. maugeri, Italy). time-domain variables included mean heart 
rate (hr), standard deviation of the normal-to-normal rr in-
tervals (sdnn), and percentage of 50-ms or greater differences 
between adjacent r-r intervals (pnn50). spectral components 
were quantified by an autoregressive decomposition algorithm 
that computed peak powers and central frequencies and clas-
sified them into HF (0.15–0.40 Hz), LF (0.04–0.15 Hz), and 
VLF (< 0.04 Hz) bands. HF and LF R-R variability compo-
nents were considered in both absolute values and normalized 
units (hfnu and lfnu ); the latter were obtained by dividing the 
power of each component by total variance minus the vlf and 
DC (0 Hz) components x100. The LF/HF ratio was calculated 
as an estimate of sympathovagal balance. to ascertain whether 
hrv changes are unique only to rem sleep, cardiac variables 

were separately averaged within subjects for all rem, nrem, 
and awake segments sampled.

statistical analyses
to ascertain that groups did not differ on sleep architecture, 

group comparisons on all measures were made using indepen-
dent, 2-tailed t-tests. ecg differences were evaluated with a 
standard battery of 9 measures arranged in a multivariate de-
sign to control for intercorrelations among ecg measures. one 
of these measures (lfnu) was treated as primary endpoint, all 
others as secondary. ecg measures were entered in 3 separate 
2 × 2 manovas (rem, stage 2, awake), with group (nm, 
ctl) as an independent factor, night (n1, n3) as a repeated 
measure, and a multivariate grouping of 9 variables (rrmean, 
sdnn, pnn50, hf, lf, vlf, hfnu, lfnu, lf/hf) as depen-
dent measures. an error rate of p = 0.05 was applied to the 
primary endpoint; an error rate correction for all other measures 
was established for each state at p = 0.05/#measures, or 0.05/8 
= 0.006. pearson correlations were used to assess relationships 
between psychopathology scores and hrv measures only for 
the NM group because an insufficient number of data points 
were available for the ctl group. correlations were also cal-
culated between a rem sleep propensity measure (rem% on 
n2) and hrv measures for the entire sample.

ecg samples were less numerous for night 3 because 2 
nm and 2 ctl subjects dropped out after night 1. In addition, 
there were stage differences in the number of valid ecg epochs 
used for analysis because stage 2 sleep was sampled for both 
ascending and descending subtypes (producing twice as many 
epochs as for rem sleep), and because fewer valid epochs of 
awake than of sleep ecg were available.

results

subject characteristics
the nm group scored higher (m = 11.13 ± 8.4) than the ctl 

group (m = 4.73 ± 6.0) on Beck depression (t25 = 2.17, p = 0.04) 
and marginally higher on spielberger state anxiety (36.3 ± 8.9 
vs. 30.3 ± 5.2; t24 = 1.93, p = 0.065) and scl-90-r global sever-
ity (59.0 ± 10.6 vs. 50.1 ± 10.8; t24 = 1.93, p = 0.061). the nm 
group rated their pre-laboratory home dreams as being more 
anxious (m = 5.98 ± 1.4) than did the ctl group (m = 2.59 ± 
1.5; t24 = 3.13, p = 0.007), and more of them were nms (m = 
0.20 ± .26 per day) than for the ctl group (m = 0.00 ± 0.00; 
Mann Whitney U = 21.0, Z = −2.284, P = 0.056, 2-tailed).

for nm subjects, trait anxiety scores correlated with time 
domain measures on both nights, especially with stage 2 sdnn 
and pnn50 and to a lesser extent awake sdnn and pnn50 
(table 1). state anxiety scores correlated more marginally only 
with stage 2 frequency domain measures lfnu, hfnu, and lf/
hf. however, none of the preceding correlations survived ap-
plication of a conservative (Bonferroni) error correction for 
multiple correlations (0.05/72 = 0.0007).

general sleep characteristics
as shown in table 2, the nm and ctl groups differed very 

little on standard sleep measures for the 3 nights of the study. the 
only measures differentiating the groups were n1 rem latency 
(p = 0.021; nm > ctl), n1 nrem/rem cycle duration (p = 
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0.004; nm > ctl) and, marginally, n1 #rem periods (nm < 
ctl). a group × night interaction effect for average rem den-
sity was marginal (F1,14 = 3.762, p = 0.073), and nm and ctl 
groups did not differ on this measure for either n1 (nm: 0.123 ± 
0.06; ctl: 0.163 ± 0.04; t14 = 1.32, p = 0.209) or n3 (nm: 0.102 
± 0.94; ctl: 0.095 ± 0.05; t14 = −0.34, P = 0.740).

rem sleep deprivation and rebound effects
selective rem sleep deprivation successfully reduced 

rem% for the nm group from 19.7% ± 6.5% on n1 to 15.0% 
± 5.3% on n2 (t14 = 4.103, p = 0.0004). rem% was similarly 
reduced for ctl subjects from 20.5% ± 4.8% on n1 to 14.0% 
± 5.4% on n2 (t10 = 4.316, p = 0.0003). a differential rem 
rebound for the 2 groups was apparent only when rem% was 
examined by thirds of the night. a marginal group (nm, ctl) 
× thirds (1st, 2nd, 3rd) × night (n1, n3) interaction (F2,42 = 
2.843, p = 0.069) indicated that, relative to n1, nm subjects 
rebounded in the 1st third (4.7% vs. 2.3%; t13 = −3.182, P = 
0.007) and 2nd third (9.2% vs. 6.5%; t13 = −2.708, P = 0.018), 
but not the 3rd third (11.3% vs. 10.7%; t13 = −0.438, P = 0.669) 
of n3, whereas ctl subjects rebounded in the 1st third (5.5% 
vs. 2.6%; t8 = −5.529, P = 0.001) and 3rd third (13.5% vs. 9.1%; 
t8 = −4.733, P = 0.001) but not the 2nd third (8.2% vs. 7.9%; 
t8 = −0.243, P = 0.814) of N3.

hrv measures
There were no significant differences between NM and CTL 

groups in the number of ECG epochs analyzed for any stage.
the overall multivariate analysis for ecg measures taken 

in REM sleep revealed a significant Group × Night interac-
tion (hotelling t = 2.257, F9,12 = 3.01, p = 0.039) which was 
also present for lfnu considered alone (t = 0.260, F1,20 = 5.19, 
p = 0.034; figure 1). this interaction indicated that lfnu was 
higher for nm than for ctl subjects on n3 (F1,20 = 16.969, p = 
0.0005), but only marginally so on n1 (F1,20 = 3.682, p = 0.069). 
The only other REM sleep ECG measure to reflect this interac-
tion was a trend for hfnu (t = 0.199, F1,20 = 3.990, p = 0.060; 
all other interactions: p > 0.18); hfnu was lower for nm than 
for ctl subjects on n3 (F1,20 = 13.613, p = 0.001), but not on 
n1 (F1,20 = 3.431, p = 0.083). lf/hf did not produce a similar 
interaction effect (p = 0.663), even though simple effects fol-
lowed the same pattern as for lfnu, i.e., nm subjects higher 
than ctl subjects on n3 (F1,20 = 9.627, p = 0.006), but only 
marginally so on n1 (F1,20 = 3.704, p = 0.069).

the multivariate analysis for stage 2 sleep ecg mea-
sures showed no overall group × night interaction (t = 
0.433, F9,12 = 0.577, P = 0.793) and no significant interaction 
for lfnu (p = 0.533) or any other dependent measures (all 
p > 0.32). the multivariate analysis for awake also showed no 
overall group × night interaction (t = 1.130, F9,12 = 1.506, p = 
0.250) and no interaction for lfnu (t = 0.001, F9,12 = 0.017, p = 
0.898) or any other dependent measures (all p > 0.32), with the 
possible exception of a trend for vlf (t = 0.189, F9,12 = 3.789, 
p = 0.066).

To further explore the specificity of the LFnu effect to REM 
sleep on n3, the univariate simple effects for group observed 
for n3 lfnu were also examined for stage 2 and awake on both 
n1 and n3. these comparisons are detailed in table 3 (for n1) 
and table 4 (for n3). for n1, no group differences were noted 

table 1  —Pearson correlations between State and Trait Anxiety measures 
and HRV time and frequency domain measures on Night 1 (N1; N = 16) 
and Night 3 (N3; N = 14) for subjects with frequent NMs 

statea traitb

time domain r P r P
rem hr-n1 −0.071 ns 0.141 ns

hr-n3 0.010 ns 0.156 ns

sdnn-n1 −0.113 ns −0.410 ns

sdnn-n3 −0.154 ns −0.524 0.054

pnn50-n1 0.010 ns −0.351 ns

pnn50-n3 −0.016 ns −0.420 ns

st2 hr-n1 0.111 ns 0.245 ns

hr-n3 0.072 ns 0.236 ns

sdnn-n1 −0.307 ns −0.637 0.008

sdnn-n3 −0.418 ns −0.665 0.009

pnn50-n1 −0.186 ns −0.580 0.019

pnn50-n3 −0.406 ns −0.615 0.019

awake hr-n1 0.130 ns 0.314 ns

hr-n3 −0.199 ns 0.228 ns

sdnn-n1 −0.439 ns −0.553 0.026

sdnn-n3 −0.445 ns −0.623 0.017

pnn50-n1 −0.195 ns −0.452 0.079

pnn50-n3 −0.225 ns −0.556 0.039

Frequency domain
rem lFnu-n1 −0.397 ns 0.058 ns

lFnu-n3 −0.142 ns 0.199 ns

hFnu-n1 0.382 ns −0.085 ns

hFnu-n3 0.104 ns −0.234 ns

lF/hF-n1 −0.251 ns 0.310 ns

lF/hF-n3 −0.117 ns 0.302 ns

st2 lFnu-n1 −0.462 0.072 0.007 ns

lFnu-n3 0.029 ns 0.017 ns

hFnu-n1 0.503 0.047 −0.045 ns

hFnu-n3 −0.032 ns −0.107 ns

lF/hF-n1 −0.542 0.030 0.089 ns

lF/hF-n3 0.057 ns 0.145 ns

awake lFnu-n1 −0.145 ns 0.322 ns

lFnu-n3 −0.189 ns 0.029 ns

hFnu-n1 0.081 ns −0.364 ns

hFnu-n3 0.215 ns −0.046 ns

lF/hF-n1 −0.300 ns 0.053 ns

lF/hF-n3 −0.383 ns −0.071 ns

aSpielberger State Anxiety subscale; bSCL-90-R Anxiety subscale (T-
scores); only P < 0.08 are shown (Bonferroni corrected P = 0.0007).
N1, night 1; N3, night 3; HR, mean heart rate; SDNN, standard deviation 
of normal to normal (N-N) intervals; pNN50, percentage of N-N intervals 
that differ ± 50msec from preceding intervals; LFnu, low frequency power 
in normalized units; HFnu, high frequency power in normalized units; LF/
HF, ratio of low frequency power to high frequency power.
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table 2—Sleep architecture measures for subjects with (NM) and without (CTL) frequent nightmares

night 1 night 2 night 3

general sleep architecture 
measures

nm
(n = 16)

mean (sd)

ctl
(n = 11) 

mean (sd)
P†

nm
(n = 14)

mean (sd)

ctl
(n = 11) 

mean (sd)
P†

nms
(n = 14)

mean (sd)

ctls
(n = 8) 

mean (sd)
P†

Total sleep time (min) 426.4 (56.4) 410.8 (44.1) ns 386.8 (56.6) 353.1 (57.8) ns 398.3 (64.6) 395.8 (54.8) ns
Sleep efficiency (%) 95.5 (5.0) 96.1 (2.1) ns 83.1 (8.5) 81.0 (8.2) ns 97.3 (2.8) 98.7 (1.0) ns
Awakenings (#)a 14.6 (6.6) 18.2 (9.9) nsb 18.5 (9.5) 22.8 (13.8) ns 12.4 (8.6) 11.1 (9.5) ns
Wake after sleep onset (min)a 19.2 (22.8) 15.9 (8.3) ns 76.9 (39.3) 79.0 (33.4) ns 11.0 (12.9) 5.5 (4.6) ns
Sleep latency (min)a 11.8 (9.4) 12.4 (13.5) ns 9.4 (7.3) 10.2 (15.7) ns 6.9 (4.4) 5.8 (3.3) ns
Latency to persistent sleep (min)a 16.0 (10.9) 14.0 (14.0) ns 10.5 (7.3) 12.5 (18.3) ns 9.6 (7.3) 6.4 (4.8) ns
Latency to Stage 2 (min)a 17.1 (11.3) 14.6 (14.1) ns 13.5 (8.6) 13.7 (18.6) ns 10.1 (5.4) 8.6 (4.8) ns
Latency to Stage 3-4 (min)a 14.3 (8.9) 11.5 (6.2) ns 13.5 (8.3) 13.5 (14.0) ns 11.6 (7.2) 9.8 (4.8) ns
Awake (%)a 4.3 (4.9) 3.8 (2.1) ns 16.0 (8.3) 18.1 (7.9) ns 2.5 (2.8) 1.3 (1.0) ns
Stage 1 (%)a 5.6 (3.3) 4.6 (2.1) ns 8.3 (4.5) 7.3 (4.2) ns 5.5 (3.3) 3.4 (1.4) ns
Stage 2 (%) 52.9 (8.5) 49.3 (8.2) ns 52.5 (6.5) 51.0 (8.2) ns 46.5 (10.6) 44.6 (7.7) ns
Stage 3-4 (%) 21.9 (7.2) 25.6 (8.5) ns 24.2 (7.2) 27.7 (8.5) ns 22.8 (7.5) 23.5 (6.2) ns

rem sleep measures
Latency to REM (min) 115.4 (64.5) 73.5 (11.1) 0.021b 108.2 (66.1) 83.5 (28.3) nsb 66.7 (31.7) 51.0 (22.8) ns
REM/NREM cycle duration (min) 112.3 (29.8) 86.2 (6.9) 0.004b 90.7 (28.0) 78.5 (16.7) ns 86.6 (15.0) 80.5 (6.7) ns
REM periods (#) 3.8 (0.9) 4.5 (1.0) 0.065 5.4 (1.7) 5.5 (1.8) ns 4.0 (1.0) 4.4 (1.1) ns
REM (%) 19.7 (6.5) 20.5 (4.8) ns 15.0 (5.3) 14.0 (5.4) ns 25.2 (7.6) 28.5 (3.4) ns
REM efficiency (%) 85.4 (11.2) 88.2 (6.0) ns 85.1 (12.3) 83.9 (13.2) ns 85.0 (13.1) 88.7 (5.8) ns
REM fragmentation (#stage shifts 
within REM period)

13.9 (7.1) 14.0 (4.5) ns 12.0 (5.3) 11.7 (4.5) ns 15.9 (7.3) 18.0 (7.2) ns

†2-tailed, independent t-tests, P-values > 0.15 not displayed; aVariable log(X+1) transformed for statistical comparisons; bComparison used unequal variance 
assumption (Levene P < 0.05)

Figure 1—Normalized low frequency (LFnu) and high frequency (HFnu) power in REM sleep, Stage 2 sleep, and Awake for Nights 1 and 3. From Night 1 to 
Night 3, REM LFnu decreases and REM HFnu increases for the CTL but not the NM group. The pattern reflects a continuing relative sympathetic activation 
and parasympathetic withdrawal following REM deprivation for the NM group. Plots are for 2 × 2, Groups (NM, CTL) × Nights (N1, N3), MANOVA interaction 
effects (see text). Group simple effects: ***P < 0.0005; **P < 0.01; *P < 0.05.
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for ecg measures in any stage. however, for n3, parallel, al-
beit diminished, effects were found for both stage 2 and awake. 
stage 2 lfnu was higher for nm subjects than for ctl subjects 
on n3 (F1,20 = 6.902, p = 0.016) but only marginally so on n1 
(F1,20 = 3.706, p = 0.069); awake lfnu was marginally higher 
for nm than for ctl subjects on both n3 (f1,20 = 4.282, p = 
0.052) and n1 (F1,20 = 3.300, p = 0.084). none of these differ-
ences exceeded the error-corrected p = 0.006 threshold.

Whole-sample pearson correlations between the 3 measures 
that most clearly distinguished nm and ctl groups (lfnu, 
hfnu, lf/hf) and a measure of rem sleep propensity (rem% 
on N2) were uniformly nonsignificant (all P > 0.16). Pearson cor-
relations between these 3 measures for rem, stage 2, and awake 
states (n1 and n3) and mean dream content anxiety ratings from 
the home logs revealed weak relationships for n1 (figure 2, left 
panel). for n3, however, correlations were observed only for 
rem sleep (figure 2, right panel), i.e., rem lfnu (r15 = 0.456, 
p = 0.088), rem hfnu (r15 = −0.542, P = 0.037), REM LF/HF 
(r15 = 0.524, p = 0.045); however, with a conservative correc-
tion for multiple correlations (0.05/9 = 0.006), none of the cor-
relations with dream anxiety remain significant.

discussiOn
rem sleep deprivation proved to be a moderately effective 

challenge procedure for uncovering hrv anomalies among 

subjects with frequent nms. Whereas standard hrv measures 
assessed during wakefulness or on the baseline recording night 
revealed minimal differences between nm subjects and con-
trols, some of the same measures produced differences when 
assessed during post-deprivation recovery sleep. the differ-
ences on n3 were apparent even though the two groups did not 
differ on standard sleep stage measures at this time. the hrv 
differences were detected almost exclusively after normaliza-
tion of ecg power values, a procedure strongly recommended 
by the task force of the european society of cardiology,28 but 
one that is implemented only rarely in sleep studies. among the 
normalized measures assessed, those derived from REM sleep 
produced by far the clearest group differences. Specifically, in 
rem sleep nm subjects had higher than normal lfnu power 
and lf/hf ratios and lower than normal hfnu power. more-
over, these recovery night rem sleep measures were especially 
likely to correlate with subject-rated anxiety in home dreams, 
in that high dream anxiety was associated with relative sympa-
thetic arousal (high lfnu power, high lf/hf ratio, low hfnu 
power). These findings support to some extent our expectation 
that sympathetic activity during the rem sleep of nm subjects 
would be abnormally elevated and related to nightmare patho-
genesis. contrary to our expectations, however, there was no 
evidence that any hrv measure differentiated groups on the 
baseline recording night.

table 3—Night 1 (baseline sleep) heart rate variability (HRV) measures for subjects with and without frequent nightmares

nightmare  (n = 16) control (n = 11) group comparisons (P)†

rem st 2 awake rem st 2 awake rem st 2 awaketime domain

hr M 66.8 62.2 64.5 63.6 60.9 63.0 ns ns ns
SD 12.5 11.7 10.9 6.7 5.8 7.0

sdnna M 71.3 60.6 55.7 77.8 67.9 58.9 ns ns ns
SD 38.8 35.5 28.5 38.0 29.5 29.7

pnn50b M 11.0 13.0 12.6 14.7 19.1 16.4 ns ns ns
SD 8.1 8.6 9.6 9.4 8.7 10.8

Frequency domain: absolute

vlF M 1416.4 693.1 552.4 1160.4 629.6 172.9 ns ns ns
SD 1834.3 483.2 693.0 856.2 383.0 233.2

lF M 2095.6 1527.0 1304.6 1875.7 1547.2 809.4 ns ns ns
SD 2736.7 1544.3 2116.1 1599.8 1536.8 578.3

hF M 2070.3 2024.8 1542.1 2622.0 2790.9 2299.8 ns ns ns
SD 3612.1 3333.3 2307.8 2977.7 3375.7 3081.5

Frequency domain: normalized

lFnuc M 56.0 44.0 42.8 45.3 34.2 28.6 0.069 0.069 ns
SD 13.6 11.1 17.2 10.3 12.4 18.2

hFnuc M 36.8 47.9 51.4 47.6 56.7 65.2 ns ns ns
SD 13.9 10.9 18.1 12.1 12.9 17.4

lF/hF M 2.9 1.6 1.5 1.4 1.0 0.7 0.069 ns ns 

SD 2.0 0.9 1.3 1.0 0.9 0.7

†2-tailed, univariate F-tests, P-values > 0.08 not displayed; aSDNN = standard deviation of R-R intervals;  bpNN50 = proportion of R-R intervals differing from 
preceding interval by ± 50msec; cNormalized values calculated as a proportion of total power minus VLF

HRV in Recurrent Nightmares—Nielsen et al



SLEEP, Vol. 33, No. 1, 2010 119

among control subjects, and (b) moderate rem sleep depri-
vation may be an aggravating pathophysiological factor in 
the perpetuation of nms. If so, situational and dispositional 
factors that are known to influence REM sleep may be exam-
ined for their potential to disrupt the autonomic activity of 

rather, the appearance of group differences and correla-
tions with dream anxiety exclusively during recovery sleep 
supports to some extent the related notions that (a) rem 
sleep specific autonomic processes are more easily disrupted 
by rem sleep deprivation among nm subjects than they are 

table 4—Night 3 (post-REM deprivation recovery) heart rate variability (HRV) measures for subjects with and without frequent nightmares

nightmare (n = 14) control (n = 8) group comparisons (P)†

rem st 2 awake rem st 2 awake rem st 2 awaketime domain

hr M 65.6 62.6 67.1 62.8 59.9 65.2 ns ns ns
SD 11.5 11.4 11.0 8.3 6.4 7.5

sdnna M 68.6 60.4 46.8 69.6 64.2 57.8 ns ns ns
SD 28.7 32.1 23.5 23.9 27.4 21.9

pnn50b M 10.6 12.5 10.1 16.6 18.5 18.9 ns ns 0.053
SD 7.7 9.2 9.4 8.5 9.1 10.2

Frequency domain: absolute

vlF M 1104.9 874.0 387.5 1052.6 611.7 639.0 ns ns ns
SD 1181.8 750.6 387.5 632.7 303.2 417.0

lF M 1885.0 1563.8 590.3 1377.5 1405.2 497.7 ns ns ns
SD 1438.3 1477.0 601.6 902.9 1252.3 217.1

hF M 1410.6 1690.6 1189.8 2030.4 2446.7 2294.3 ns ns ns
SD 1822.2 2286.1 1552.9 2084.1 2900.1 2806.5

Frequency domain: normalized

lFnuc M 57.2 45.1 39.2 39.5 32.7 24.1 0.0005 0.016 0.052
SD 11.1 10.2 17.7 6.3 11.5 14.1

hFnuc M 34.5 46.5 52.8 51.9 58.0 68.1 0.001 0.023 0.063
SD 11.9 9.7 18.6 7.6 11.9 15.3

lF/hF M 2.8 1.5 1.6 1.0 0.9 0.5 0.006 ns ns
SD 1.5 0.8 2.4 0.4 0.9 0.4

†2-tailed univariate F-tests, P-values >.08 not displayed; aSDNN = standard deviation of R-R intervals;  bpNN50 = proportion of R-R intervals differing from 
preceding interval by ± 50msec; cNormalized values calculated as a proportion of total power minus VLF

Figure 2—Pearson correlations between average home log dream anxiety ratings (1 to 9 scale) and normalized REM sleep, Stage 2 sleep and Awake state 
cardiac variability measures for laboratory Night 1 (N1, left panel) and Night 3 (N3, right panel). *P < 0.05; †P = 0.088.
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It might be argued that normalized frequency domain mea-
sures discriminated between groups because they were weighted 
by the vlf power measure, which is much more predominant 
in rem sleep than in any other sleep/wake state.32 however, 
this possibility is doubtful both because we found no difference 
in absolute vlf power between nm and ctl groups and be-
cause the lf/hf ratio, a measure not weighted by vlf power, 
revealed a group effect that paralleled effects for the lfnu and 
hfnu measures. as mentioned earlier, lfnu, hfnu, and lf/hf 
measures provide largely equivalent information about relative 
sympathetic activation.29

To a limited extent, the autonomic profile of our NM sam-
ple resembles that of anxious normal subjects59 in that, during 
wakefulness, they were marginally lower on some hrv mea-
sures (pnn50, vlf, hf) and higher than normal on the lf/
hf ratio. unlike anxious normals, however, our nm subjects 
did not have lower than normal awake lf or lfnu values. our 
nm subjects’ lower hf and hfnu scores also parallel those 
for insomniac patients assessed either during wakefulness60 or 
sleep.23 On the whole, our findings are consistent with a grow-
ing body of work demonstrating abnormal HRV findings for 
individuals with anxiety disorders20,21 and raise the question of 
whether nightmares share a common pathophysiology with one 
or more such anxiety disorders.

an important limitation to the present study is the fact that 
no habituation night was employed to stabilize sleep before re-
cording of the baseline psg. It is therefore possible that the 
baseline differences observed for nm subjects, though minor, 
are due to the nm subjects’ higher sensitivity to the labora-
tory situation. Such a “first-night effect” is well documented to 
involve primarily rem sleep measures, such as skipped early 
rem periods,61,62 prolonged rem latencies,62 and longer rem/
nrem cycles.63 one possibility is that nm subjects manifest 
a more extreme first night effect than do CTL subjects.64 how-
ever, the fact that rem% did not differentiate nm and ctl 
groups on the first night, even though REM% is the most sensi-
tive65 and most consistently reported indicator of the first-night 
effect,62,63,65 tends to discount this explanation.
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